

SaSI Innovation Company Limited

GENERAL INFORMATION - InnoSIF[™] v1

Revision No: 1 6th February 2022

Copyright © 2015-2022 by SaSI Innovation Company Limited, All rights reserved

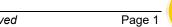
TABLE OF CONTENTS

Introduction	. 1
Smart Risk Matrix	. 1
Detailed Risk Analysis With Bow-Tie Model	. 2
Production Loss Equation (PLE)	. 2
Prior Use Device Justification	. 2
ALARP Demonstration	. 2
SIF Design Concept	. 3
Complete SIF Design in One Page	. 3
Fault Tree Analysis (FTA) for Subsystem Design Configuration	. 4
β-Factor Estimator	. 4
Proof Test Assignment	. 4
SIF Design Verification Dashboard	. 5
Reporting Capability	. 5

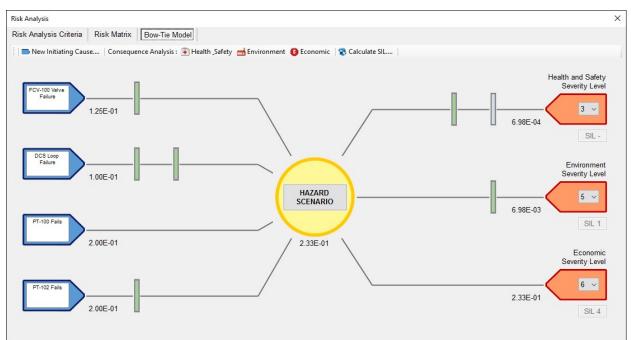
INTRODUCTION

InnoSIF[™] is a sophisticated tool aiding the SIL assessment by making complicated process simplified, yet realistic and flexible based on data optimization concept. Users can customize any data to reflect a real-life plant based on their

experience. The ambiguous risk assessment will be eliminated by Smart risk matrix and/or Bowtie modelling upon user's preference. With the flexibility of SIF design developed by InnoSIF™, there are no complex systems that cannot be evaluated.

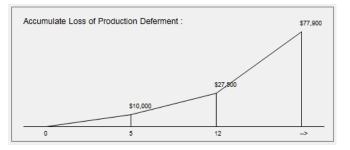

SMART RISK MATRIX

Hea	Ith and Safety SI Environment SI Economic SI	2] []] []] []					
Hazard Scenario	Consequence	No Impact	Slight	Minor	Moderate	Major	Massive	Extreme
Demand Interval (year)	Likelihood / Seve Level	rity (1)	(2)	(3)	(4)	(5)	(6)	(7)
< 10	(6)	SIL - / SIL - >	SIL-/SILa ≻1	SIL - / SIL 1 > 10	SIL a / SIL 2 > 100	SIL 1 / SIL 3 > 1,000	SIL 2 / SIL 4 > 10,000	SIL 3 / SIL X > 100,000
10 - 100	(5)	SIL - / SIL - -	SIL - / SIL - - 1	SIL - / SIL a 1 - 10	SIL - / SIL 1 10 - 100	SIL a / SIL 2 100 - 1,000	SIL 1 / SIL 3 1,000 - 10,000	SIL 2 / SIL 4 10,000 - 100,0
100 - 1,000	(4)	SIL - / SIL - -	SIL - / SIL - -	SIL - / SIL - - 1	SIL - / SIL a 1 - 10	SIL - / SIL 1 10 - 100	SIL a / SIL 2 100 - 1,000	SIL 1 / SIL 3 1,000 - 10,00
1,000 - 10,000	(3)	SIL - / SIL - -	SIL - / SIL - -	SIL - / SIL - -	SIL - / SIL - - 1	SIL - / SIL a 1 - 10	SIL - / SIL 1 10 - 100	SIL a / SIL 2 100 - 1,000
10,000 - 100,000	(2)	SIL - / SIL - -	SIL - / SIL - -	SIL - / SIL - -	SIL - / SIL - -	SIL - / SIL - - 1	SIL - / SIL a 1 - 10	SIL - / SIL 1 10 - 100
> 100,000	(1)	SIL - / SIL - <	SIL - / SIL -	SIL - / SIL - <	SIL - / SIL - <	SIL - / SIL - <	SIL - / SIL - < 1	SIL - / SIL a < 10


Smart Risk Matrix is customizable tool for developing risk criteria. It can be set to any sizes by combination of rows and columns from 1x1 up to 8x8. Three (3) aspects of consequence; personnel safety, environment and economic will be aligned into one matrix via acceptable/tolerable criteria as user's safety policy, and then Smart matrix will automatically transforms the criteria to be SIL level and Risk Reduction Factor (RRF).

Severity Criteria	Level	Tolerable Risk (year-1)	Acceptable Risk (year-1)	Health & Safety Impact	Environmental Impact	Economic Impact
No Impact	1	100	1	No Safety Concern	No Impact	< 100 USD
Slight	2	10	0.1	RWDC (<30 Days)	Slightly Impact	100 - 1,000 USD
Minor	3	1	0.01	RWDC (>30 Days)	Localized Impact	1 - 10 kUSD
Moderate	4	0.1	0.001	LWDC (<30 Days)	Corporate Emer. R	10 - 100 kUSD
Major	5	0.01	0.0001	LWDC (>30 Days)	Community Emer	100 k - 1 MUSD
Massive	6	0.001	0.00001	Disability	Regional Assistance	1 - 10 MUSD
Extreme	7	0.0001	0.000001	Fatality	International Assis	> 10 MUSD

Simplified Risk Criteria Development for Consequence Analysis



Bow-tie model is a famous risk assessment methodology. It can develop a hazard scenario in graphical and take account of the Layer of Protection analysis (LOPA) technique for detailing the consequence severity evaluation.

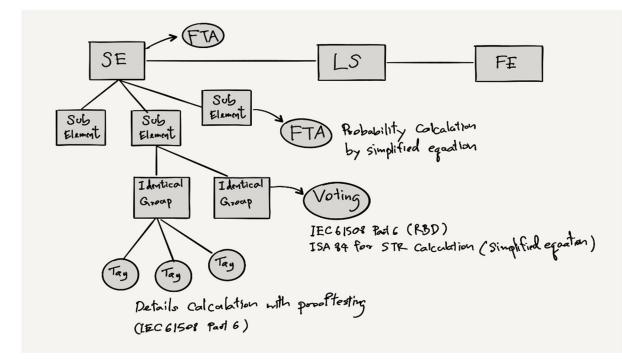
PRODUCTION LOSS EQUATION (PLE)

Production loss equation (PLE) is a good practice to make high resolution of the economic impact assumption on the hazardous event, The PLE can be built one or more cases depending on the production loss scenario specific on the evaluated plant.

Start(Hrs)	End(Hrs)	Loss(per Hr)
0	5	2000
5	12	2500
12	0	300

PRIOR USE DEVICE JUSTIFICATION

InnoSIF[™] provides guideline for device justification as IEC61511 prior use requirements. User can develop different justification cases as many as they want and export reports out for approval process.


ALARP DEMONSTRATION

"As Low As Reasonably Practicable" or ALARP concept applied for economic justification when decision making required to choose a fit-for-purpose SIF design among several alternative designs.

SIF DESIGN CONCEPT

SIF design concept of InnoSIF[™] is more flexible to develop a complex SIF. To simplify process of design, InnoSIF[™] provides user-friendly interface to build a complete SIF design in one page. The subsystem configuration can be developed using Fault Tree Analysis modelling (FTA), which helps users demonstrate their design in graphical.

COMPLETE SIF DESIGN IN ONE PAGE

Sensing Element						
Sensing Element Subsystems	Add Subsystem	Identical SE Groups	Add Iden. Group	Device Tag	Description	Add Device
CT Heat Exchanger Firebox Pressure HH	Edit Remove	CT Heat Exchager Pressu	Edit Remove	PS-1	CT Heat Exchanger Fir	Edit Remove
	Design Config.		Design Config.			Device Propertie
	Status :		CCF Scenario		~	Voting Config. : 1001
ogic Solver						
Logic Solver Subsystems	Add Subsystem	Identical LS Groups	Add Iden. Group	Device Tag	Description	Add Device
Main PLC System	Edit Remove	Main PLC Controller	Edit Remove	Main PLC-02 Main	PLC-02 _C Controller	Edit Remove
	Design Config.	Main PLC Input Main PLC Output	Design Config.			Device Propertie
	Status :		CCF Scenario		~	Voting Config. : 1001
inal Element			-			
Final Element Subsystems	Add Subsystem	Identical FE Groups	Add Iden. Group	Device Tag	Description	Add Device
Close Heat Recovery Valve	Edit Remove	Hot Air MOV	Edit Remove	MV-1	Heat Recovery (Hot Air	Edit Remov
	Design Config.		Design Config.			Device Propertie
	Status :		CCF Scenario			Voting Config. :

Complex SIF can be easier designed in one page with simplified process. The SIF design concept implemented in InnoSIF[™] is more flexibility, No SIF is too complex to achieve in InnoSIF[™].

Page 3

FAULT TREE ANALYSIS (FTA) FOR SUBSYSTEM DESIGN CONFIGURATION

Subsystem Design Configuration Design Configuration Build Items List : OUT 1 OUT 2 OUT 2 OUT 1 OUT 2 OUT 2 OUT 1 OUT 2 OUT 2 OUT 2 OUT 1 OUT 2 O	Selected Items :
AND	<
inlet pressure inlet temp S-100 Diff to achieve safety requirement.	Configuration : Build cted when all of selected items (systems) required tted when either one of selected items (systems) irement.

Subsystem design configuration task is frustrated the most SIF designer in complex SIF. Fault Tree Analysis (FTA) helps designer to simplify it, and make complex SIF calculation achieved in easier way. FTA model can help users demonstrate their design in visualization concept, it can reduce error on SIF design process.

β -FACTOR ESTIMATOR

Common cause failure (CCF) or β -factor is an important parameter required in PFD calculation. InnoSIFTM provides a systematic method to estimate the β -factor as the technique provided by IEC61508 Part-6.

PROOF TEST ASSIGNMENT

Proof Testing						×
Subsystem Eleme	ent : Final Element	\sim	Proof Test Iter	ms :		
Device Tag	Description		Test Type		Ti (Hours)	
100-SDV-001	V-100 Inlet Valve		Full Test		8760	1Y
			Overhaul and	Test	35040	4Y
		L				
			Test Type :	Partial	Test	~
			Time Interval :	Partial		
				Full Te		
				Overha	aul and Test	
			Add	Edit	П	Remove

The proof test assignment screen makes this task simplified and faster as all devices / components in a SIF are combined into one point of configuration, so proof testing tasks can be assigned to any devices in a SIF easily.

SIF DESIGN VERIFICATION DASHBOARD

S'
2

With SIF design verification dashboard, it is very easy to point out what is the SIF design problems. User can correct the SIF design faster and easier. Design optimization is very simple task for any users with SIF design verification dashboard functionality.

SIF ID : SIF-100-001			
311 12 : 311-100-001	Sensing Element	Logic Solver	Final Element
Tag Design :	Completed	Completed	Completed
Iden. Group Design :	Completed	Completed	Completed
Subsystem Design :	Completed	Completed	Completed
HFT Requirement :	Pass	Not Evaluated	Pass
Architectural Constraints :	SIL 2	Not Evaluated	SIL 2
Response Time (Sec) :	0.100	0.300	4.000
PFDavg (Max) :	1.30E-02	4.89E-05	2.44E-03
PFDavg (Min) :	1.11E-02	4.06E-05	1.94E-03
Reliability Budget :	Pass	Pass	Pass
STR (per year) :	1.62E-02	2.33E-02	2.41E-02

REPORTING CAPABILITY

InnoSIF[™] is built-in with report generating tool. Related SIL study data can be easily exported in MS Excel format and SIL study results will be generated as individual SIF report, it is very useful for developing of Safety Requirement Specification (SRS) document.

Causes and Effects Diagram

Causes and Effects diagram is very useful tool for safety validation process. It shows relationship among sensing devices condition and final elements action that function in the logic solver. User can verify correctiveness of a SIF action, easily.

Participation Matrix

Participation matrix is another useful feature to summarize the members participation of each SIF in the SIL study workshop. This will enable traceability for users or auditors to track the right members when some particular information may be required.

	SIL STUDY PA MAT		SIF-100-001	SIF-100-002	SIF-100-003	SIF-100-004	SIF-100-005	SIF-100-006	SIF-100-007	SIF-100-008	SIF-200-001	SIF-200-002	SIF-200-003	SIF-200-004	SIF-500-001	SIF-500-002	SIF-500-003	SIF-600-001
01	Mario K.	Facilitator	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
02	Peter C.	Process	Х		Х	Х		Х	Х						Х	Х		Х
03	Oneil A.	Mechanical		Х	Х		Х	Х		Х	Х		Х	Х	Х		Х	Х

Page 5

Safety Requirements Specification (SRS)

SaSI Innovation Company Limited

SIL Study Project ABC Plant Unit 1100

Document No.ECG-2022-C000XX-1001

6th February 2022

Rev	Date	Revision Note	Prepared By	Approved By
0	6-FEB-2022	Issue for Approval	Mario K.	Peter S.

The document was automatically prepared by InnoSIF software. The contents in the document developed through competent end-user team , the software developer team shall not be liable in any event consequential damages or safety incident in connection with the application of the document. The report format is copyright © 2015-2022 by SaSI Innovation Company Limited., all rights reserved.

Safety Requirements Specification (SRS) - Table of Contents

TABLE OF CONTENTS

Description	Page
General Information	1
SIL Classification Data	2
SIF Verification Data	3
Recommendation List	7
Safety Requirements Specification (SRS)	
SIF-ARS-001: Hot Air Fan, High Inlet Temperature (TT-4)	8
SIF-ARS-002: Air-to-Air Heat Exchanger, Low Air Flow (FT-1)	12
SIF-ARS-003: CT Heat Exchanger, High Firebox Pressure (PS-1)	16

Safety Requirements Specification (SRS) - General Information

Safety Requirements Specification (SRS) - General Information					
Project :	SIL Study	Plant :	ABC Plant		
Client :	SaSI Innovation Company Limited	Unit :	1100		
Description :	-	Prepared By :	Mario K.		

STUDY TEAM	
Full Name	Role
Mario K.	Facilitator
Peter S.	Project Manager
Michael O.	Operation
Robert P.	Process Engineer
Naomi S	Maintenance
Kim C. J.	Technical Safety

DOCUMENT REFERENCE		
Document Name	Document Code	Revision
Drying Room Schematic	-	2/3/2022

SIF LIST		
SIF ID	Description	Function Group
SIF-ARS-001	Hot Air Fan, High Inlet Temperature (TT-4)	CT Heat Exchanger
SIF-ARS-002	Air-to-Air Heat Exchanger, Low Air Flow (FT-1)	Air-to-Air Heat Exchanger
SIF-ARS-003	CT Heat Exchanger, High Firebox Pressure (PS-1)	Hot Air Fan

Safety Requirements Specification (SRS) - SIL Classification

Safety Require	InnoSIF		
Project :	SIL Study	Plant :	ABC Plant
Client :	SaSI Innovation Company Limited	Unit :	1100
Description :	-	Prepared By :	Mario K.

TOLERABLE / ACCEPTABLE CRITERIA - HEALTH & SAFETY					
Severity	Level	Tolerable Freq.	Acceptable Freq.	Consequence	
Extreme	7	0.000001	0.000001	Multiple fatalities	
Massive	6	0.00001	0.00001	Single fatality	
Major	5	0.0001	0.0001	PDC, >1 LWDC	
Moderate	4	0.001	0.001	LWDC, >1 RWDC	
Minor	3	0.01	0.01	RWDC, >1 First-Aid	
Slight	2	0.1	0.1	First-Aid	
No Impact	1	1	1	No impact	

TOLERABLE / ACC	EPTABLE C	RITERIA - ENVIRONI	MENT	
Severity	Level	Tolerable Freq.	Acceptable Freq.	Consequence
Extreme	7	0.000001	0.000001	Very serious
Massive	6	0.00001	0.00001	Irreparable, Public
Major	5	0.0001	0.0001	Irreparable, Localized
Moderate	4	0.001	0.001	Major LOPC
Minor	3	0.01	0.01	Minor LOPC
Slight	2	0.1	0.1	Slightly Impact
No Impact	1	1	1	No Impact

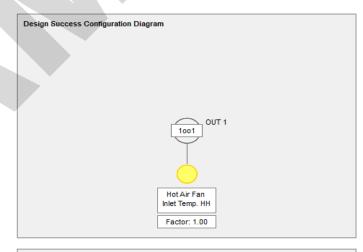
TOLERABLE / ACCEPTABLE CRITERIA - ECONOMIC					
Level	Tolerable Freq.	Acceptable Freq.	Consequence		
7	0.000001	0.000001	> 1,000 MTHB		
6	0.00001	0.00001	100 - 1,000 MTHB		
5	0.0001	0.0001	10 - 100 MTHB		
4	0.001	0.001	1 - 10 MTHB		
3	0.01	0.01	100 k - 1 MTHB		
2	0.1	0.1	< 100 kTHB		
1	1	1	No Impact		
	Level 7 6 5 4 3	Level Tolerable Freq. 7 0.000001 6 0.00001 5 0.0001 4 0.001 3 0.01	LevelTolerable Freq.Acceptable Freq.70.0000010.00000160.000010.0000150.00010.000140.0010.00130.010.01		

INITIATING CAUSES					
	Freq /yr (Min)	Freq /yr (Max)	Data Source		
Human Error (VSD Wiring)	0.0005	0.0005	Plant Exp		
D-EF-F/M-01 Air Fan Failure	0.1	0.1	CCPS		
H-F/M-01 Heater Filter Blockage	0.1	0.1	CCPS		
Unsafe Operation (Start-Up)	1.56	1.56	Plant Exp		

BARRIERS (IPL)					
	PFDavg (Min)	PFDavg (Max)	Data Source		
PT-1 High Pressure Alarm	0.1	0.1	CCPS		
Specific Operating Procedure	0.1	0.1	CCPS		

CONDITIONAL MODIFIERS					
	Factor (Min)	Factor (Max)	Data Source		
Operation Requirement (Time at Risk)	0.86	0.86	Plant Exp		

Safety Requirements Specification (SRS) - SIF Verification

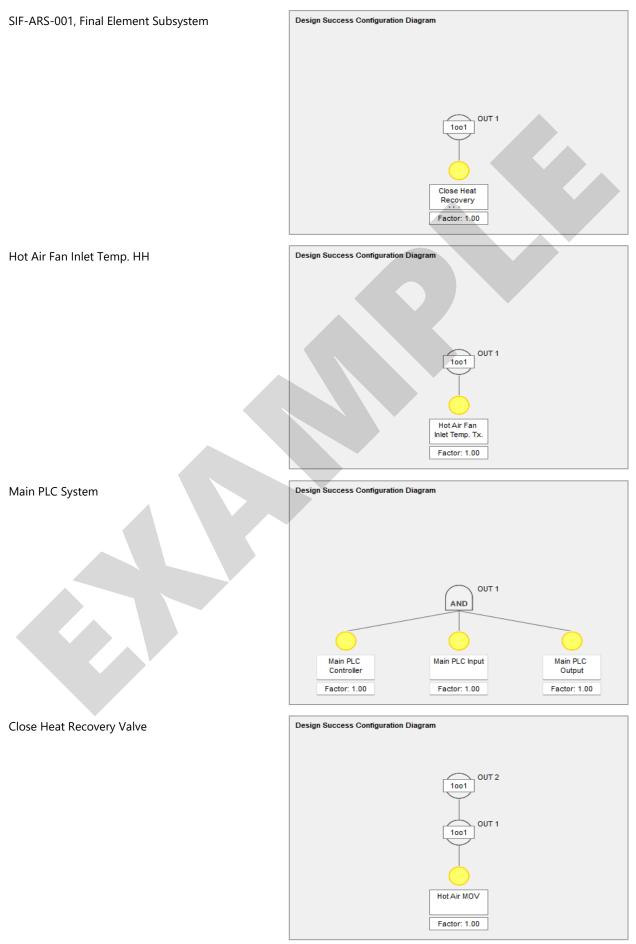

Safety Require	Verification	InnsSIF	
Project :	SIL Study	ABC Plant	
Client :	SaSI Innovation Company Limited	Unit :	1100
Description :	-	Prepared By :	Mario K.

SIL TABLE							
	PFDavg (Lower)	PFDavg (Upper)	Target PFDavg	RRF (Lower)	RRF (Upper)		
SIL X	0.000001	0.00001	Redesign	100,000	1,000,000		
SIL 4	0.00001	0.0001	0.00007	10,000	100,000		
SIL 3	0.0001	0.001	0.0007	1,000	10,000		
SIL 2	0.001	0.01	0.007	100	1,000		
SIL 1	0.01	0.1	0.07	10	100		
SIL a	0.1	1	0.7	1	10		
SIL -	1	10	Not Required	0	1		

RULES SET / DESIGN ASSUMPTION	
Equipment Life Time (Year) :	20
Beta-Factor or CCF across Subsystems :	0.005
Generic Subsystems MTTR (Hour) :	48
SE Subsystem Reliability Budget (%) :	35
LS Subsystem Reliability Budget (%) :	15
FE Subsystem Reliability Budget (%) :	50

SUBSYSTEMS DESIGN CONFIGURATION

SIF-ARS-001, Sensing Element Subsystem



SIF-ARS-001, Logic Solver Subsystem	า

Design Success Configuration Diagram OUT 1 1001 Main PLC System Factor: 1.00

Safety Requirements Specification (SRS) - SIF Verification

Safety Require	InnoSIF			
Project :	Project : SIL Study Plant :			
Client :	SaSI Innovation Company Limited	Unit :	1100	
Description :	-	Prepared By :	Mario K.	

Safety Requirements Specification (SRS) - Recommendation List

<u> </u>	1 1 7		
Project :	SIL Study	Plant :	ABC Plant
Client :	SaSI Innovation Company Limited	Unit :	1100
Description :	-	Prepared By :	Mario K.

InneSIF

Class B

ACTION CLASSIFICATION						
Class Name	Description	Critical (Y/N)				
Class A	Mandatory action, shall be implemented ASAP	Y				
Class B	Recommended action, Operational purpose or Economic Risk	Ν				
Class C	Recommended action, General purpose	Ν				

SPECIFIC SIF ACTIONS LIST

SIF ID: SIF-ARS-001

Improve flow sensor to be higher reliability type

Improve flow sensor to be higher reliability type. Following options may be considered.

- DP flow transmitter with diagnostic capability (HART communication technology, smart type),

- Insertion Type Flowmeter (e.g. Thermal mass, Annubar or whichever practicable for the ducting conditions),

- SIL certified DP flow sensor,

- etc.

InneSIF Safety Requirements Specification (SRS) - SIF Analysis and Design

Project :	SIL Study	Plant :	ABC Plant			
Client :	SaSI Innovation Company Limited	Unit :	1100			
Description :	-	Prepared By :	Mario K.			

SIF ID : SIF-ARS-001 Hot Air Fan, High Inlet Temperature (TT-4) Status : Pass

Function Group: Hot Air Fan

Process Safety Time (Sec) :

5

Hazard Analysis

Hazard / Design Success Criteria :

This SIF is designed to prevent Hot Air Fan (D-EF-F/M-02) damage due to over-temperature.

PHA Ref: NODE-01, More Temperature

Demand / Risk Reduction Measures :

The hazard potential would occur when

IC1: D-EF-F/M-01 Air Fan Failure.

IC2: H-F/M-01 Heater Filter Blockage.

IC3: Unsafe Operation (Wrong start-up steps, Hot air flow through air-to-air heat exchanger while no return air flow).

Note:

Start-up activity is required once a week.

Protection Layer: IPL1: Specific Operating Procedure (Start-up).

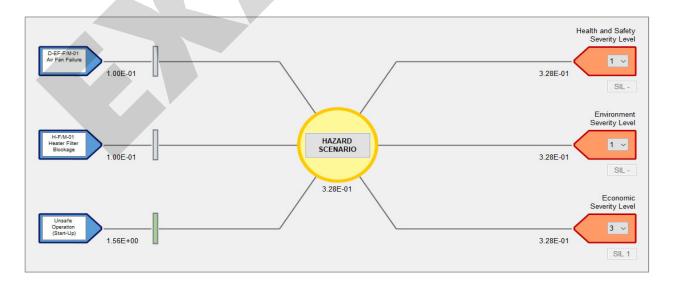
Consequence :

Once the hazard occurs, it will lead to Hot Air Fan damage and resulting in Health & Safety:

N/A

Environment:

N/A


Economic:

Loss of total < 1 MTHB for Hot Air Fan (D-EF-F/M-02) maintenance.

Note:

- Production opportunity loss (estimated 300 canister/mins) during the drying room is unavailable; however, another drying room could be utilized in emergency case.

- In case of Hot Air Fan (D-EF-F/M-02) is unavailable, the production could be continue operated via air-to-air heat exchanger bypass line with electric heater (H-F/M-01) instead of waste heat recovery system.

Initiating Cause #1	PFDavg / Factor	Frequency (/year)
D-EF-F/M-01 Air Fan Failure		1.00E-01
Initiating Cause #1 Barriers (IPL) and Conditional Modifiers		
Operation Requirement (Time at Risk)	0.86	8.60E-02
- 6 -		

Project :	SIL Study		Plant :	ABC Plant	
Client :	SaSI Innovation Company Limited		Unit :	1100	
Description :	-	Pre	pared By :	Mario K.	
SIF ID : SIF-AR	S-001 Hot Air Fan, High Inlet Temperat	ure (TT-4)		Status :	Pass
Function Group :	Hot Air Fan	Process	Safety Ti	me (Sec) :	5
Initiating Cause #2			PFDavg	/ Factor	Frequency (/year)
H-F/M-01 Heater Filte	er Blockage				1.00E-01
Initiating Cause #2 Ba	rriers (IPL) and Conditional Modifiers				
Operation Requireme	nt (Time at Risk)		0.86		8.60E-02
Initiating Cause #3			PFDavg	/ Factor	Frequency (/year
Unsafe Operation (Sta	irt-Up)				1.56E+00
Initiating Cause #3 Ba	rriers (IPL) and Conditional Modifiers				
Specific Operating Pro	ocedure		1.00E-01		1.56E-01
Hazardous Event Rel	ease Frequency				3.28E-01
Health & Safety Conse	equence Barriers (IPL) and Conditional Mod	ifiers	PFDavg	/ Factor	Frequency (/year)
N/A			N/	Ά	3.28E-01
Environment Consequ	ence Barriers (IPL) and Conditional Modifie	rs	PFDavg	/ Factor	Frequency (/year
N/A			N/	Ά	3.28E-01
Economic Consequen	ce Barriers (IPL) and Conditional Modifiers		PFDavg	/ Factor	Frequency (/year
N/A			N/	Ά	3.28E-01
Hazard Analysis Res					

Severity Level		Frequency (/year)	SIL Level	ALARP Demonstration Required?
Health and Safety	1	3.28E-01	SIL -	No
Environment	1	3.28E-01	SIL -	
Economic	3	3.28E-01	SIL 1	

Target SIL Level	Target PFDavg	Required RRF	
SIL 1	3.03E-02	33	

Safety Requirements Specification (SRS) - SIF Analysis and Design

J I			· · ·				
Pro	Project : SIL Study			Plant :	ABC Plant		
C	lient : Sa	SaSI Innovation Company Limited		Unit :	1100		
Descrip	tion : -			Prepared By :	Mario K.		
SIF ID : SIF-ARS-001 Hot		01 Hot Air F	an, High Inlet Tempera	ture (TT-4)	Status :	Pass	

Function Group: Hot Air Fan

Process Safety Time (Sec) :

5

SIF Design : Low Demand Mode

Sensing Element	HFT Requirement	Response Time	PFDavg (Min)	PFDavg (Max)	
Subsystem	Pass	0.1	7.05E-03	8.49E-03	
Hot Air Fan Inlet Temp. HH		0.1	7.05E-03	8.49E-03	
1001 Hot Air Fan Inlet Tem	ıp. Tx.	0.1	7.05E-03	8.49E-03	
X degC TT-4		0.1	7.05E-03	8.49E-03	
Logic Solver	HFT Requirement	Response Time	PFDavg (Min)	PFDavg (Max)	
Subsystem	Not Evaluated	0.1	4.72E-03	5.86E-03	
Main PLC System		0.1	4.72E-03	5.86E-03	
Main PLC Controller		0.1	5.43E-05	6.45E-05	
- Main PLC-	02	0.1	5.43E-05	6.45E-05	
Main PLC Input		0.01	4.34E-03	5.41E-03	
- Main PLC-	02-I	0.01	4.34E-03	5.41E-03	
Main PLC Output		0.01	3.17E-04	3.83E-04	
- Main PLC-	02-0	0.01	3.17E-04	3.83E-04	
Final Element	HFT Requirement	Response Time	PFDavg (Min)	PFDavg (Max)	
Subsystem	Pass	4	1.27E-02	1.30E-02	
Close Heat Recovery Valve		4	1.27E-02	1.30E-02	
1oo1 Hot Air MOV		4	1.27E-02	1.30E-02	
Close MV-1		4	1.27E-02	1.30E-02	

Test Requirements :

Equipment Tag	Test Item	Mode	S/D	Interval - Hrs	
TT-4	Sensor Function Test	Manual	No	8,760 (1Y)	
Main PLC-02	PLC Diagnostic Test	Manual	No	8,760 (1Y)	
Main PLC-02-I	PLC Diagnostic Test	Manual	No	8,760 (1Y)	
Main PLC-02-O	PLC Diagnostic Test	Manual	No	8,760 (1Y)	
MV-1	Full Test	Manual	Yes	8,760 (1Y)	
	Overhaul and Test	Manual	Yes	43,800 (5Y)	

Safety Require	ments S	pecifica	ation (SF	rs) - sif	Analysi	s and D	esign	InnsSIF
Project :	SIL Study				Plant :	ABC Plant		
Client :	SaSI Innov	SaSI Innovation Company Limited				Unit :	1100	
Description :	-				Pro	epared By :	Mario K.	
SIF ID : SIF-AR	S-001	Hot Air Fa	n, High Inle	et Tempera	ure (TT-4)		Status :	Pass
Function Group :	Hot Air F	an			Proces	s Safety Ti	me (Sec) :	5
SIF Design Result :								
PFDavg (Min)	PFDavg (Max)		STR (Min)		STR (Max)			
2.45E-02	2.74	3.65		E-02	4.46E-02		Pass	
RRF (Min)	RRF (Max)	Total Resp		oonse Time			
37	4	41 4.200 Sec						
Design HFT Requirement Response Time			Relia. A	llocation Override		e Facility	Reset Method	
Pass		Pa	Pass AVE		RAGE Requ		uired	Manual
2.00E-02 1.50E-02 1.00E-02 5.00E-03 0.00E+00					-	er	31%	21%
Achieved SIL L	Achieved SIL Level Achieved PFDavg (N		FDavg (M	lin) Ach		chieved I	hieved RRF (Max)	
SIL 1		2.45E-02		41				

SaSI Innovation Company Limited

29/36 Krokyaicha Road, Noenphra Sub-District, Mueang Rayong District Rayong 21150, THAILAND

Bangkok Office 2/1326, Prasertmanukit Road, Senanikom Sub-District, Jatujak District Bangkok 10900, THAILAND

> Contact Consultant.admin@sasiinnovation.co.th Tel: +66814123650 www.sasiinnovation.co.th

Copyright © 2015-2022 by SaSI Innovation Company Limited, All rights reserved